Hier werden die Unterschiede zwischen zwei Versionen gezeigt.
Beide Seiten, vorherige Überarbeitung Vorherige Überarbeitung Nächste Überarbeitung | Vorherige Überarbeitung | ||
cups:star_trophy_league [2025/08/19 15:53] xspeedfreak79x Update |
cups:star_trophy_league [2025/10/01 20:01] (aktuell) svenson [League 2] |
||
---|---|---|---|
Zeile 27: | Zeile 27: | ||
| Gründung | | Gründung | ||
| Gründer | | Gründer | ||
- | | Organisatoren | + | | Organisatoren |
| **Statistik & Fakten** | | **Statistik & Fakten** | ||
- | | Aktueller Champion 🏆 | + | | Aktueller Champion 🏆 |
| Rekordchampion 🏆 | (je 4x) Milane Spremberg {{wiki: | | Rekordchampion 🏆 | (je 4x) Milane Spremberg {{wiki: | ||
| **Aktuelle Spielzeiten** | | **Aktuelle Spielzeiten** | ||
- | | Vorige Saison | + | | Vorige Saison |
- | | Aktuelle Saison | + | | Aktuelle Saison |
| **Wiki** | | **Wiki** | ||
- | | Autoren | + | | Autoren |
===== 2. Regelwerk ===== | ===== 2. Regelwerk ===== | ||
Zeile 64: | Zeile 64: | ||
- Wenn keine der beiden Mannschaften einlädt und das Spiel nicht stattfindet, | - Wenn keine der beiden Mannschaften einlädt und das Spiel nicht stattfindet, | ||
- Verschuldet ein Team 2 Spielausfälle in einer Saison, so wird dieses von der Star Trophy League ausgeschlossen! | - Verschuldet ein Team 2 Spielausfälle in einer Saison, so wird dieses von der Star Trophy League ausgeschlossen! | ||
- | + | ||
- | ===== 3. Teilnehmende Teams ===== | + | ===== 3. Statistiken ===== |
- | ==== League 1 ==== | + | |
- | < | + | |
- | <figure class=" | + | |
- | <table class=" | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>0 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | < | + | |
- | <figure class=" | + | |
- | < | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td style=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>0 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | < | + | |
- | <figure class=" | + | |
- | < | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td style=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>0 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | < | + | |
- | <figure class=" | + | |
- | <table class=" | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>0 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | < | + | |
- | <figure class=" | + | |
- | <table class=" | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>0 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | < | + | |
- | <figure class=" | + | |
- | <table class=" | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>1 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | < | + | |
- | <figure class=" | + | |
- | <table class=" | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>0 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | < | + | |
- | <figure class=" | + | |
- | <table class=" | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>0 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | ==== League 2 ==== | + | |
- | < | + | |
- | <figure class=" | + | |
- | <table class=" | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>0 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | < | + | |
- | <figure class=" | + | |
- | <table class=" | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>0 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | < | + | |
- | <figure class=" | + | |
- | <table class=" | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>0 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | < | + | |
- | <figure class=" | + | |
- | <table class=" | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>0 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | < | + | |
- | <figure class=" | + | |
- | <table class=" | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>0 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | < | + | |
- | <figure class=" | + | |
- | <table class=" | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>0 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | < | + | |
- | <figure class=" | + | |
- | <table class=" | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>0 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | < | + | |
- | <figure class=" | + | |
- | <table class=" | + | |
- | < | + | |
- | < | + | |
- | <th style=" | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | <tr align=" | + | |
- | <td width=" | + | |
- | <td width=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | < | + | |
- | <td colspan=" | + | |
- | </ | + | |
- | < | + | |
- | <td colspan=" | + | |
- | <td>0 x</ | + | |
- | < | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | + | ||
- | ===== 4. Statistiken ===== | + | |
< | < | ||
<table style=" | <table style=" | ||
Zeile 565: | Zeile 82: | ||
</ | </ | ||
- | ==== Alle Saisons auf einen Blick ==== | + | ===== 4. Teilnehmende Teams ===== |
+ | ==== League 1 ==== | ||
+ | ^ Hockenheim Fuel || | ||
+ | | {{https:// | ||
+ | ^ {{https:// | ||
+ | |||
+ | ^ Nordic Vikings | ||
+ | | {{https:// | ||
+ | ^ {{https:// | ||
+ | |||
+ | ^ Charlie CHEBlins | ||
+ | | {{https:// | ||
+ | ^ {{https:// | ||
+ | |||
+ | ^ Herne Miners | ||
+ | | {{https:// | ||
+ | ^ {{https:// | ||
+ | |||
+ | ^ LU Lions || | ||
+ | | {{https:// | ||
+ | ^ {{https:// | ||
+ | |||
+ | ^ IceFishermans Snag || | ||
+ | | {{https:// | ||
+ | ^ {{https:// | ||
+ | |||
+ | ^ Milane Spremberg | ||
+ | | {{https:// | ||
+ | ^ {{https:// | ||
+ | |||
+ | ^ Nordland Vikingar | ||
+ | | {{https:// | ||
+ | ^ {{https:// | ||
+ | |||
+ | |||
+ | ==== League 2 ==== | ||
+ | |||
+ | ^ Snowhawks Bergen | ||
+ | | {{https:// | ||
+ | ^ {{https:// | ||
+ | |||
+ | ^ Tappare Tampere | ||
+ | | {{https:// | ||
+ | ^ {{https:// | ||
+ | |||
+ | ^ Coburg Ice Cats 2023 || | ||
+ | | {{https:// | ||
+ | ^ {{https:// | ||
- | 1. [[cups:star_trophy_league_200|Auflage | + | ^ Kataklysm HC || |
+ | | {{https:// | ||
+ | ^ {{https:// | ||
- | 2. [[cups:star_trophy_league_201|Auflage | + | ^ Sudbury Bulldogs |
+ | | {{https:// | ||
+ | ^ {{https:// | ||
- | 3. [[cups:star_trophy_league_202|Auflage | + | ^ Skoda Tigers Reform |
+ | | {{https:// | ||
+ | ^ {{https:// | ||
- | 4. [[cups:star_trophy_league_203|Auflage | + | ^ EHC Black Hawks || |
+ | | {{https:// | ||
+ | ^ {{https:// | ||
- | 5. [[cups:star_trophy_league_204|Auflage | + | ^ Krokodile Hamburg |
+ | | {{https:// | ||
+ | ^ {{https:// | ||
- | 6. [[cups: | ||